
2C_Fracture Toughness 

Definition and Units 
Fracture toughness is written as 

 which has units of   (Mega Pascals root meters); note that 

The subscript "c" represents the critical values (the fracture limit) of  which is called the stress intensity factor. It 

combines the applied stress (MPa) with the flaw size (m). , which is called the stress-intensity factor, represents local 

stress field and the displacement-field at the crack tip. Since it is the stress concentration at the crack tip which can 

precipitate fracture (that is, propagation of the crack), the fracture property of the material is described in terms of ; 

fracture occurs when , where  is a "handbook" property of the material, which spells its resistance to crack 

propagation: hence it is called the fracture toughness of the material.  
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The fracture toughness for many classes of materials are shown in the map where  is plotted against the Youngs 

Modulus. Once again the Youngs Modulus becomes a guide to fracture resistance. Typical range of values for different 

materials are: 

Glasses (silica for example)     1 to 2 MPa m1/2 

Engineering Ceramics (zirconia, silicon carbide, alumina)  5 to 10 MPa m1/2 

Engineering Metals (tungsten carbide, titanium, etc.)  10 to 100 MPa m1/2 

 

The stress-intensity factor combines the applied stress and the flaw size in the 
following manner 
           

            (1) 

 

Here  is a dimensionless parameter which depends on the shape of the flaw. It is of order unity. Typically, it has a value 

ranging from unity to .  

The Significance of Surface Energy 
Fracture of a solid is accompanied by the creation of new surface. For example consider the fracture of ice. Fracture creates 

two surfaces. Therefore we can envision that cracks propagate by 

successive scission of bonds at the crack tip. As the bonds break, two 

fresh surfaces are created, as shown by the yellow atoms on the right. 

The work done to break the bonds is related to the "work of fracture". 

This work of fracture is given units of J m–2, that is, the work done to 

extend the crack surface by a square meter. It is written as: 

 in J m–2 

It is equal to the work of breaking  bonds where  

 , that is the number of atoms per unit area of surface.  

It can be shown that 

      (2) 
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where  is the Youngs modulus. Note that the data shown in the map above follows that guideline predicted by Eq. (2) that 

the fracture toughness increases with the Youngs Modulus.  

Mechanism of Fracture at the Crack Tip 
The mechanism of fracture is related to the events at the crack tip that lead to propagation of the crack. The simplest scenario 

is where individual bond break one at a time to propagate te crack as shown in the figure with green atoms within the solid 

and yellow atoms on the free surface. Translated into the propagation of a crack tip, 

 

 

 But there may be other mechanisms as well which require much more work to break the bonds. For example, in polymers 

the bonds are the crack tip stretch until they break. This stretching of the bonds at the crack tip is shown below 

 

The work done to break a bond, is the integral of force times the displacement. In polymers this integral is large because 

considerable displacement is need to break the fibrils. Therefore, 
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Fracure criterion here 
is thst the local 
stress exceeds the 
fracture stress of the 
bond. 

length scale is the 
interatomic spacing 
which we write as the 
cube root of Omega 



  

Yet we see in the map that both the polymer and the glass have similar values for . The reason why this is so is because 

 

 From Eq. (2) we have that: 

      (3) 

Therefore, which the work of fracture is higher in polymers, their low elastic modulus reduces their fracture toughness. 

Remember that the fracture toughness  is the engineering design parameter since is includes both the fracture 

stress and the flaw size.  

Further Comments on Eq. (2) 
      (2) 

The equation related three "hand book" parameters for a material. Among them  is the work of fracture that is the work 

done to break bonds multiplied by the number of bonds per unit area,  is the elastic modulus which is related to the elastic 

stiffness of the bonds., while  is the fracture toughness which couples the fracture stress to the flaw size. Rewriting Eq. 

(2): 

     (3) 

Therefore, even if the work of fracture is high, a lower modulus can lower the effective fracture toughness of the material.  

engineering resistance of the material to fracture.  

For example in the map given above note that the fracture toughness of glass and polymers is nearly the same ( about 1 MPa 

m1/2) even though as evident from the two sketches on the previous page, the work to propagate the crack in polymers, where 

the fibrils have to be stretched significantly to advance the crack, is much larger than the work done to break bonds at the 

crack tip in a brittle material such as glass.  

Indeed the data in the map allows us to estimate how much greater  is relative to . Since both materials 

have approximately the same value of , and because , we estimate that 

 

Next we shall try to understand why the elastic modulus plays a role in the fracture resistance of a material. 
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The Role of the Elastic Modulus 
For the crack to propagate the mechanical work expended to propagate the crack must be greater than the work of fracture.  

The change in the mechanical work when the crack grows from  has two parts: (i) the work done on or by the 

surroundings on the system, and (ii) the change in the stored elastic energy in the system. We consider these two terms in the 

following way, 

The sketch on the right shows the crack of size , in State I, grow 

into  in State II. The potential energy of the system decreases 

by  which is equal to the area of the blue rectangle shown 

below, as ABCD. This work can be used to grow the crack.  

However, the stored elastic energy in the system also changes. The 

stored energy changes from the initial area of the triangle, OAD to 

the triangle OBC.  

Note that OBC > OAD by the sliver of the triangle OAB. Moreover 

in magnitude Area (OAB) = (1/2)Area (ABCD). Noting that while 

OAB increases the (stored mechanical energy), ABCD decreases the 

total potential energy Therefore the total mechanical energy of the 

system is decreased by  

 Area (ABCD)  (4) 

This is the mechanical energy available to overcome the work of 

fracture.  

I will leave it to you to study what the quantity given by Eq. (4) will 

increase in magnitude (that is increase the work available to 

overcome the work of fracture) for a lower modulus material. For example consider the two figures below, the one on the 

right having a lower modulus, that is a higher compliance.  

  High Modulus (high E)      Low Modulus (low E) 

 

 

  

 

   

It is easy to read that the work available for fracture is greater for the low modulus material (since the area of the rectangle is 

greater) for the lower modulus material.  
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